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Abstract

Behavioral search drivers allow more information about the
behavior of individuals in an environment to be used during
selection. In this paper, we examine several selection meth-
ods based on de-aggregating the motion of soft robots into
behavior vectors used to drive search. We adapt three behav-
ioral search drivers to this task: ε-lexicase selection, discov-
ery of objectives by clustering, and novelty search. These
methods are compared to age-fitness pareto optimization and
random search. We analyze how these search drivers affect
the diversity and quality of soft robots that are tasked with
moving as far of a distance as possible. Perhaps the most
surprising finding is that random search with elitism is com-
petitive with previously published methods. Overall, we find
that elitism plays an important role in the ability to find high
fitness solutions, and that lexicase selection and discovery of
objectives by clustering with elitism tend to produce the most
fit solutions.

Introduction
Living organisms interact with their environments in myr-
iad ways that affect their chances of selection and survival.
Factors that influence their outcomes vary with space, time,
and as a function of their own behavior and morphology.
Despite this complexity, it is very common in evolutionary
computation (EC) to assign scalar fitness values to individ-
uals to determine their selection/survival probabilities. Such
a simplification is welcomed, of course, if it is an adequate
surrogate for producing the types of results and/or solutions
a researcher is concerned with producing, but the assump-
tions are important to note.

By collapsing all of a candidate’s behavior into a single
value, scalar fitness assignments may lose information re-
garding the differential performance of individuals for spe-
cific scenarios. For example, imagine an individual exhibits
behavior in a particular part of the environment that is per-
ferable to the behavior of the rest of the population in similar
scenarios. If this behavior is not reflected in the average of
the individual’s behavior over all scenarios, this potentially
useful semantic/behavioral “building block” can be lost dur-
ing evolution. The evolutionary dynamics of scalar fitnesses
were central to the unexpected findings in an early analysis

of genetic algorithms (GAs) (Mitchell et al., 1994), which
found that aggregate fitness scores could mask the ability of
GAs to leverage building blocks, even in the ideal conditions
created by the royal road functions.

Others have pointed out the shortcoming of scalar fitness
values (Spector, 2012; Krawiec and Liskowski, 2015) and
attempts to address it have led the emergence of so-called
behavioral search drivers, also known as semantic methods.
Although motivations for their development vary, a central
motivation for most behavioral search drivers is their ability
to leverage more information about each individual during
the selection process. Many of these techniques have de-
veloped in the genetic programming (GP) community. In
this paper, we analyze a handful of recent methods for their
ability to evolve soft robotic creatures. The use of behav-
ioral search drivers may be well-suited to the soft robotics
domain for the following reasons: 1) robots must interact
with heterogenous environments, where challenges to suvi-
val may vary spatially; 2) robots have complex morpholo-
gies that expand and contract with time, leading to complex
behaviors that may contain important subsets of information
useful to determining their survival.

Below, we briefly review previous work in evolving soft
robots. In the Methods section, we describe the five algo-
rithms compared in our study. In our experiment, we bench-
mark the ability of these search drivers to evolve locomotion
in soft robots. We then perform a detailed analysis of the
resulting creatures.

Previous Work

To simulate soft-tissue robots, Hiller and Lipson (2014) de-
veloped the Voxelyze and VoxCad simulation tools, in which
objects are composed of 3D “pixels”, i.e. voxels, that have
various material properties. The physics simulator provides
a 3-dimensional physical world with static and dynamic
multibody physics. The initial attempts to evolve robots
using simple representations yielded mixed, but promising,
results (Hiller and Lipson, 2012). Following these initial
experiments, Cheney et al. (2013) proposed a new repre-
sentation scheme that allowed greater evolvability. Robots
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were constructed from a pre-defined palette of four mate-
rials representing bone, muscles and ligaments. The au-
thors proposed a developmental solution to the construction
of more regular and symmetrical morphologies by sampling
a compositional pattern producing network (CPPN) (Stan-
ley, 2007) to construct forms. Subsequent work has moved
towards a multi-objective approach, using Pareto optimiza-
tion to incorporate complexity, energy usage, and age into
guide the evolutionary process (Cheney et al., 2015; Krieg-
man et al., 2017). The results have produced seemingly life-
like gaits and behaviors1 reminiscent of early work by Sims
(1994).

Several studies have built off of the results of Cheney et al.
(2013). Different environmental settings have been studied,
including aquatic environments (Corucci et al., 2016), dif-
ferent gravitational environments (Methenitis et al., 2015),
and constricted spaces (Cheney et al., 2015). New ap-
proaches to encoding the robots using a developmental life-
span have shown promise (Kriegman et al., 2017). Of par-
ticular relevance to this paper has been the proposal to use
novelty search to guide evolution. Methenitis et al. (2015)
found that novelty search, especially when paired with an
elitist strategy, could find morphologies that travelled far-
ther distances than those found with using distance travelled
as fitness, although the differences were less dramatic than
those afforded by the indirect encoding.

In contrast to previous studies, the central focus of our
paper is to analyze selection methods used to evolve soft
robots. We introduce two behavioral selection methods that
were developed for GP: discovery of objectives by cluster-
ing (Krawiec and Liskowski, 2015) and ε-lexicase selec-
tion (La Cava et al., 2016). These two methods differ from
novelty search in that they treat each behavioral observation
as a test that directly reflects the ability of a candidate solu-
tion to solve a portion of the overall problem at hand. Nev-
ertheless, we consider novelty search a behavioral search
driver as well, due to its use of a set of behaviors to de-
termine preference for selection.

The behavioral search drivers we consider here are selec-
tion methods, although semantic variation methods are also
actively researched in GP; see Vanneschi et al. (2014) for a
review. The semantic selection methods we study have been
compared for classification tasks in Liskowski et al. (2015)
and symbolic regression tasks in Liskowski and Krawiec
(2017). The regression and classification problem domains
are quite different, in that the “tests”, i.e. behaviors, can be
mapped directly to samples from the training set. In the fol-
lowing section, we introduce a behavioral definition to de-
aggregate robot behavior in its environment in a way that is
reflective of progress towards the objective.

1https://youtu.be/EXuR_soDnFo

x

Figure 1: De-aggregated behavior definition. The dotted
blue line represents an example robot trajectory. dt (gray
arrow) is the robot’s distance from the origin at time step t.
∆dt (black dotted arrow) is the change in distance from the
origin at time step t.

Methods
In the following sections we describe how the behavior of
each robot is defined. We then describe the different selec-
tion methods tested and offer some insight into their me-
chanics.

Aside from the methods for selection and the behavior
definitions, we follow the soft robot implementations used
previously. The genotype of the robots are defined using
a CPPN representation, evolved using framework known as
neuro-evolution of augmenting topologies (NEAT) (Stanley,
2007). The CPPN encoding produces three outputs that are
interpreted to decide 1) whether or not to place a voxel in a
given location, 2) whether the voxel will be soft or stiff, and
3) whether the voxel will be active (muscle) or passive. Prior
work has highlighted the improvements in evolvability and
regularity of the morphologies brought about by this encod-
ing (Cheney et al., 2015; Methenitis et al., 2015). Our im-
plementation of these methods is built off of an open-source
implementation2, and is available here3.

Behavior Definition
In accordance with previous work, we focus on the task of
robot exploration by rewarding robots for travelling far from
their initial location during simulation. The position of our
robot’s center of mass is defined by the tuple (xt, yt, zt),
with (x0 = 0, y0 = 0, z0 = 0) corresponding to its start-

2https://github.com/skriegman/evosoro
3http://github.com/lacava/evosoro
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ing position. At time step t, the body lengths travelled by
a robot, dt is defined as the square root of the norm of its
planar motion:

dt =
√

(x2t + y2t )/L (1)

Here L is the lattice dimension of the robot. Previous
works (Kriegman et al., 2017; Cheney et al., 2015) have used
dt in addition to other fitness penalties. Complexity is penal-
ized based on the number of voxels, v. Energy expenditure
is penalized based on the number of active voxels, denoted e.
Finally, age (a) has been used an objective in an age-fitness
Pareto optimization scheme (Schmidt and Lipson, 2011). In
combination with random restarts each generation, the age
variable generally improves diversity and prevents prema-
ture convergence.

In order to apply behavioral search drivers, we require
a set of behaviors that are reflective of preference for se-
lection. We will refer to this set of behaviors as F =
{f1(n), . . . , fm(n), n ∈ N}, where fi(n) is the ith behav-
ior of robot n in population N .

Whereas previous work has defined behavior according to
many different measures (Methenitis et al., 2015), we adopt
a more simplistic approach and focus just on the planar mo-
tion of the robot at each time step. Assume our simulation
consists of T timesteps 0 . . . t . . . T . Then the distance cov-
ered by a robot at each time step can be defined as follows:

∆dt+1 = dt+1 − dt (2)

This behavior definition is shown in Figure 1. In addi-
tion to distances travelled at each time step, we include the
aggregate scores for energy, number of voxels and age as
behaviors. For the purposes of our algorithm definitions, we
will assume all behaviors are minimized, leading to the fol-
lowing behavior definition:

F = {−∆d1,−∆dt, . . . ,−∆dT } ∪ {v} ∪ {e} ∪ {a} (3)

This behavioral definition is used for all the behavioral
search drivers.

Search Drivers
We describe the five search drivers compared in this study
in this section. For every experiment, these algorithms are
applied to the set of individuals consisting of the population
and its offspring, represented by N . The number of selec-
tions each generation, ns, is therefore half the size of N .

Pareto Optimization As a starting point, we compare to
the age-fitness pareto optimization (AFP) used in recent
work by Kriegman et al. (2017) and Cheney et al. (2015).
This implementation of AFP uses the Pareto optimization
strategy shown in Algorithm 1. The objectives are set to
{dt, a, e, v}. Each individual is ranked based on the num-
ber of individuals in the population that dominate it, and the

population is sorted by this ranking, with lower being better.
ns individuals are chosen to survive based on their rank-
ing. In the event of ties, equivalently ranked individuals are
sorted first by v, then e, then a, and finally dt, and added un-
til the population is filled. This strategy imparts a preference
relation among the objectives for breaking ties.

Algorithm 1 : Pareto Optimization
Input: populationN , objectives O, number of selections ns
♦ calculating ranking base on dominance, ≺
for n ∈ N :

rank(n) =
∑

m∈N I[m ≺ n]
N ← sort(N) by rank
P ← ∅ ♦ parents
front← 0
while |P|+ |N (n|rank(n) = front)| ≤ ns:
P ← P ∪N (n|rank(n) = front)
front← front+ 1

if |P| < ns:
S ← N (n|rank(n) = front)
sort(S) by objective preference
P ← P ∪ first ns individuals in S

return P

Novelty Search Novelty search (NOV) is the first of three
behavioral search drivers used in this work. The implemen-
tation we use is summarized in Algorithm 2. Novelty search
selects individuals that are the farthest apart in behavioral
space, based on some distance measure. In this case, we
use k-nearest neighbors with k=4 to determine the novelty
score for each individual. Novelty is calculated as the av-
erage distance of an individual to its k nearest neighbors,
where distance is defined as the Euclidean distance between
the behavior vectors. The behavior vectors are scaled zero
mean, unit-variance before computing the distances in order
to account for the different scaling of the behaviors. The top
ns most novel individuals are selected each generation.

Algorithm 2 : Novelty Search (Lehman and Stanley, 2008)
Input: populationN , behaviors F , number of selections ns
♦ calculate k nearest neighbors to each n ∈ N
S = neighbors(F , k)
♦ average distance over neighbors
for n ∈ N :

novelty(n) = 1
k

∑
s∈Sn

dist(n, s)
P ← sort(N ) descending order of novelty
return first ns individuals in P

ε-Lexicase Selection ε-lexicase selection (referred to as
LEX in this paper) is a version of lexicase selection (Spector,
2012; Helmuth et al., 2014) designed for use on continous-
valued behaviors and demonstrated for symbolic regression
problems (La Cava et al., 2016, 2018). It is described in
Algorithm 3. LEX begins each selection event with the en-
tire population in the selection pool and proceeds as follows.
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“Cases”, i.e. behaviors, are drawn randomly from F with-
out replacement. Individuals are filtered from the selection
pool if they are not within ε of the best performance for that
behavior among the current pool. Here ε is defined as the
median absolute deviation of fi, the values of fi for all indi-
viduals in N . Once the selection pool has winnowed down
to one individual or has run out of cases, this process ends,
and an individual from the selection pool is chosen at ran-
dom.

Due to its design, LEX promotes individuals that are good
at particular behaviors and particular subsets of behaviors.
Cases impart outsized selection pressure based on how hard
they are, where difficulty corresponds to the dispersion of
objective performance. As a result LEX tends to promote
diversity. A distinct variant of lexicase selection was re-
cently for proposed for evolving robotic controllers (Moore
and McKinley, 2016).

Algorithm 3 : ε-Lexicase Selection (La Cava et al., 2016)
Input: population N , behaviors F , number of selections ns

for fi ∈ F : ♦ get ε for each fi
εi ← med abs dev(fi)

P ← ∅ ♦ parents
do ns times:
P ← P ∪ GetParent(N ,F , ε) ♦ add selection to P

return P

GetParent(N ,F , ε) :
F ′ ← F ♦ objectives
S ← N ♦ selection pool
while |F ′| > 0 and |S| > 1:
fi← random choice from F ′ ♦ pick random fi
f∗i ← min fi(n) for n ∈ S ♦ best score on fi in

pool
for n ∈ S: ♦ filter pool

if fi(n) > f∗i + εm then
S ← S \ {n}

F ′ ← F ′ \ {fi} ♦ remove fi
return random choice from S

Discovery of Objectives by Clustering Discovery of ob-
jectives by clustering (DOC) attempts to identify stepping
stones for the search process based on the current perfor-
mance of the population. Based on the interaction of robots
with their environment, certain sets of behaviors may group
together, indicating emergent progress towards certain sub-
problems. To capture and preserve these sub-problems dur-
ing selection, DOC clusters the behavior set F and aver-
ages performance over sets of behaviors to generate a new
reduced-order derived objective set, G in Algorithm 4. As
in previous work, we use X-MEANS to perform the cluster-
ing, resulting in clusters of potentially 2 to 5 derived objec-
tives. These objectives are then used with Pareto Optimiza-
tion (Algorithm 1) to drive search.

Algorithm 4 : Discovery of Objectives by Cluster-
ing (Krawiec and Liskowski, 2015)
Input: population N , behaviors F , number of selections ns
{C1 . . . Ck} = cluster(F) ♦ generate k clusters
G← {g1(n) . . . gk(n), n ∈ N} ♦ new behavior set

♦ average behavior over clusters
for n ∈ N :

for j = 1 . . . k:
gj(n) =

1
|Cj |

∑
i∈Cj

fi(n)

return Pareto Optimization(N,G,ns)

Random Search We also implement a random selection
algorithm as a baseline comparison. Note that only selection
is done randomly. Therefore search progresses as a random
walk using the variation operators in NEAT.

Elitism For each algorithm, we implement elitist versions
as another point of comparison. This choice was motivated
by the results of Methenitis et al. (2015), who found that
elitism improved the performance of novelty search in this
problem domain. Elitism is implemented by checking the
population after selection has occured. If the individual from
the old population with the highest dT is not in the new pop-
ulation, it is added by replacing the individual with the low-
est dT . Note that, by its design, the AFP algorithm is already
elitist, and therefore no “elite” version is included.

Experiment
The settings for our experiment are shown in Table 1. We
conducted 20 trials of each method, focusing on soft robots
limited to 73 voxels in a 7x7x7 grid. To compare results, we
collected the best fitness (body length travelled) found each
generation by each algorithm for each trial and the complex-
ity of the corresponding individual. We also compare the al-
gorithms in terms of the median best individual created by
that method for each trial.

In addition, we look at the diversity of behaviors found
in the final generation’s population. We calculate diversity
based on the entire time trace of each individual in three di-
mensions. Let x(n) = [x0, . . . , xT , y0, . . . , yT , z0, . . . , zT ]
be the flattened trajectory of individual n. Then the diversity,
D, of the population is calculated as

D =
1

N2

∑
n,m∈N

1

2

(
1− cov(x(n),x(m))

σ(x(n))σ(x(m))

)
(4)

D is between 0 and 1.
We take a structured approach to exploring the soft robots

that result from our experiments. Based on the trajectories
x, we use clustering to identify groups of behaviors that
have evolved. We use Hierarchical Density Based Cluster-
ing (HDBSCAN) (McInnes and Healy, 2017) to compute
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Table 1: Settings for the evolutionary algorithms.

Setting Value

population size 30
generations 1000
simulation time 5 sec
robot dimensionality 73

number of random inds per generation 1

clusters from the final generations of all runs with a mini-
mum cluster size of 10 individuals. We present the resulting
clusters with visualizations of the robot morphologies in the
following section.

Results
The body lengths travelled by the best individuals found
each generation by each method are shown in Figure 2.
Note that the dotted lines represent selection methods with
elitism. It is interesting to note that elitist algorithms always
outperform non-elitist ones, across algorithms. In particular,
random search with elitism outperforms all non-elite algo-
rithms, a finding that has not been reported in other problem
domains (e.g. (La Cava et al., 2016)). Overall, LEX with
elitism produces soft robots that travel the farthest, followed
by DOC with elitism. AFP, and RAND with elitism, and
NOV with elitism all perform similarly. Among non-elite
methods, LEX produces the farthest travelling robots, fol-
lowed by DOC and NOV. RAND produces by far the worst
solutions.

The body lengths travelled by the best individual found
in each trial of each search driver is plotted in boxplot form
in Figure 4. This figure emphasizes again the importance of
elitism in driving the search towards better solutions. The
median body lengths travelled for DOC with elitism outper-
forms other methods, followed by LEX with and without
elitism, AFP, and RAND with elitism. We test for statisti-
cally significant differences using a Wilcoxon rank-sum test,
shown in Table 2. Every search driver significantly outper-
forms RAND without elitism. However, surprisingly, no al-
gorithm significantly outperforms RAND with elitism. It is
worth noting the test between LEX with elitism and RAND
with elitism is close to significant (p = 0.12), motivating an
experiment with more trials. LEX, DOC, AFP with elitism
also outperform NOV without elitism (p < 3.73e-2).

Figure 3 shows the number of voxels in the best individual
each generation for each method. RAND selection shows a
clear bias towards larger solutions, with and without elitism.
Both RAND variations show a slight upward trend after the
first 100 generations. This suggests that the variation oper-
ators in NEAT may be prone to a small amount of bloat. It
is also interesting to note the drop in size among best-found
individuals across methods. This suggests, among randomly
constructed robots, smaller ones tend to have a higher fit-
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Figure 2: Body lengths travelled by the best individual found
each generation for 73 dimension robots. Shapes repre-
sent different selection methods. The dotted line indicates
elitism. Error bars denoted the 95% confidence interval.
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Figure 3: Number of voxels in the best individual found each
generation for 73 dimension robots. Shapes represent dif-
ferent selection methods. The dotted line indicates elitism.
Error bars denoted the 95% confidence interval.
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Figure 4: Furthest body length travelled for each trial of each
selection method. Colors indicate the use of elitism.

ness. Among the other search drivers, the elitist methods all
tend to create larger robots than the non-elite methods, indi-
cated by the dotted lines in Figure 3. Given the large amount
of overlap between the standard error bars of the non-RAND
search drivers, there appears to be no clear preference for
larger or smaller solutions among the algorithms.

Next, we investigate the behavioral diversity of the fi-
nal generation. In Figure 5, the average diversity (Eqn. 4)
for each method is shown, with and without elitism. NOV
produces the most diverse populations, which is expected
since its objective function explicitly rewards behavioral di-
versity. It produces significantly more diverse solutions than
all other methods except AFP and LEX without elitism (p <
0.039). Within families of algorithms, elitism only has a
significant effect on the diversity of solutions for RAND,
in which case it increases diversity. The fact that elitism
increases the diversity of solutions obtained by RAND sug-
gests that solution diversity plays a role in the improvement
of solutions brought about by adding elitism.

The behaviors of the final populations are clustered ac-
cording to the approach described in the experiments sec-
tion. The HBDSCAN clustering produces 10 clusters of be-
havior. The trajectories of the robots in these clusters are
plotted in Figure 6. The clusters are organized from top to
bottom in order of highest average fitness among the robots
in the cluster. The gaits of the softbots corresponding to
the robots with the highest fitness within each cluster are
shown in Figure 7, with the color corresponding to material
type. Several behaviors are apparent in the results. The most
successful behavior observed is achieved by T-shaped mor-
phologies utilizing two types of muscle. This morphology
and variation in stiffness between the muscles allows the
robots to canter between front and back points of contact.
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afp doc lex nov rand
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Figure 5: Behavioral diversity in the final generation for
each trial of each selection method.

The most fit individual, as well as the first two clusters in
Figure 7, embody this technique. The second to last cluster
of robots in Figures 6 and Figures 7 also evolve a cantering
gait. As the trajectories of the top and bottom clusters at-
test, some morphologies are able to exploit the simulation
environment to achieve higher fitness by falling forward at
the beginning of the run. A video showing the gaits of these
robots is available for reference 4.

Discussion and Conclusions
We find that elitism plays a critical role in the discovery
of locomoting soft robot morphologies. The use of an eli-
tist strategy with random search is competitive with other
selection methods in our experiments. This result sug-
gests the search space is highly non-convex, especially for
search driven by scalar fitness. As a result, we are curi-
ous to know how other stochastic optimization techniques
(e.g. hill climbing) might perform on this task. The results
also suggest that behavioral search drivers, namely DOC and
LEX, may be promising selection methods for evolving soft
robot morphologies, although our experiment lacked ade-
quate power to detect statistically significant differences. In
addition, we find that behavioral clustering for exploratory
analysis of the resultant robots provides a data-driven way
to explore the morphologies.

The results also leave us with several other questions and
directions for future research. A clear next step is to study
how non-uniform environments would affect evolution, es-
pecially since behavioral search drivers provide a way to rate
behavior within local regions of the environment / simula-
tion. Future work could also consider a geodesic distance
for fitness, in order to capture the total path of the robot more
completely.

4http://tiny.cc/e2jbsy
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Table 2: Significance test p-values comparing body lengths travelled using the pair-wise Wilcoxon rank-sum test with Holm
correction for multiple comparisons. Bold indicates p < 0.05.

Method afp nov lex doc rand
Elite True False True False True False True False

nov False 3.73e-02
True 1 1

lex False 1 0.08 1
True 1 2.46e-03 0.15 1

doc False 1 0.94 1 1 0.35
True 1 1.93e-03 0.18 1 1 0.57

rand False 5.92e-09 1.62e-07 2.09e-09 2.15e-08 2.09e-09 2.15e-08 5.10e-7
True 1 1 1 1 0.12 1 0.93 8.77e-08
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Figure 6: Clustered trajectores of robot behavior. Figure 7: Robot gaits from each cluster in Figure 6.
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